Search results for "Asymptotic Safety"
showing 10 items of 37 documents
Fractal Spacetime Structure in Asymptotically Safe Gravity
2005
Four-dimensional Quantum Einstein Gravity (QEG) is likely to be an asymptotically safe theory which is applicable at arbitrarily small distance scales. On sub-Planckian distances it predicts that spacetime is a fractal with an effective dimensionality of 2. The original argument leading to this result was based upon the anomalous dimension of Newton's constant. In the present paper we demonstrate that also the spectral dimension equals 2 microscopically, while it is equal to 4 on macroscopic scales. This result is an exact consequence of asymptotic safety and does not rely on any truncation. Contact is made with recent Monte Carlo simulations.
Ultraviolet Fixed Point and Generalized Flow Equation of Quantum Gravity
2001
A new exact renormalization group equation for the effective average action of Euclidean quantum gravity is constructed. It is formulated in terms of the component fields appearing in the transverse-traceless decomposition of the metric. It facilitates both the construction of an appropriate infrared cutoff and the projection of the renormalization group flow onto a large class of truncated parameter spaces. The Einstein-Hilbert truncation is investigated in detail and the fixed point structure of the resulting flow is analyzed. Both a Gaussian and a non-Gaussian fixed point are found. If the non-Gaussian fixed point is present in the exact theory, quantum Einstein gravity is likely to be r…
Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation
2008
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian renormalization group equation. We begin by discussing various cutoff schemes, i.e. ways of implementing the Wilsonian cutoff procedure. We compare the beta functions of the gravitational couplings obtained with different schemes, studying first the contribution of matter fields and then the so-called Einstein-Hilbert truncation, where only the cosmological constant and Newton's constant are retained. In this context we make connection with…
Asymptotic Safety, Fractals, and Cosmology
2013
These lecture notes introduce the basic ideas of the asymptotic safety approach to quantum Einstein gravity (QEG). In particular they provide the background for recent work on the possibly multi-fractal structure of the QEG space-times. Implications of asymptotic safety for the cosmology of the early Universe are also discussed.
Higgs mass predicted from the standard model with asymptotically safe gravity
2016
Tässä Pro Gradu -tutkielmassa tavoitteena on ennustaa Higgsin bosonin massa ottaen lähtökohdaksi hiukkasfysiikan standardimalli, johon on kytketty gravitaatio ns. asymptoottisesti turvallisena teoriana. Ennusteen laskemiseksi selvitetään Higgsin bosonin itseiskytkennän ja neljän muun standardimallin kytkinvakion juokseminen, eli kytkinvakioiden käyttäytyminen energiaskaalan funktiona, johtavassa kertaluvussa MS-skeemassa. Standardimallista saatuihin β-funktioihin lisätään asymptoottisesti turvallisen gravitaation antamat korjaukset suurilla energiaskaaloilla, jonka jälkeen β-funktioiden muodostama differentiaaliyhtälöryhmä ratkaistaan numeerisesti. Standardimallin osittainen äärellinen remo…
Why the Cosmological Constant Seems to Hardly Care About Quantum Vacuum Fluctuations: Surprises From Background Independent Coarse Graining
2020
International audience; Background Independence is a sine qua non for every satisfactory theory of Quantum Gravity. In particular if one tries to establish a corresponding notion of Wilsonian renormalization, or coarse graining, it presents a major conceptual and technical difficulty usually. In this paper we adopt the approach of the gravitational Effective Average Action and demonstrate that generically coarse graining in Quantum Gravity and in standard field theories on a non-dynamical spacetime are profoundly different. By means of a concrete example, which in connection with the cosmological constant problem is also interesting in its own right, we show that the surprising and sometime…
The metric on field space, functional renormalization, and metric-torsion quantum gravity
2015
Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein-Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and "tetrad-only" gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an addition…
Field Parametrization Dependence in Asymptotically Safe Quantum Gravity
2015
Motivated by conformal field theory studies we investigate Quantum Einstein Gravity with a new field parametrization where the dynamical metric is basically given by the exponential of a matrix-valued fluctuating field, $g_{\mu\nu}=\bar{g}_{\mu\rho}(e^h)^\rho_{\nu}$. In this way, we aim to reproduce the critical value of the central charge when considering $2+\epsilon$ dimensional spacetimes. With regard to the Asymptotic Safety program, we take special care of possible fixed points and new structures of the corresponding RG flow in $d=4$ for both single- and bi-metric truncations. Finally, we discuss the issue of restoring background independence in the bi-metric setting.
Renormalization group flow of the Holst action
2010
The renormalization group (RG) properties of quantum gravity are explored, using the vielbein and the spin connection as the fundamental field variables. The scale dependent effective action is required to be invariant both under space time diffeomorphisms and local frame rotations. The nonperturbative RG equation is solved explicitly on the truncated theory space defined by a three parameter family of Holst-type actions which involve a running Immirzi parameter. We find evidence for the existence of an asymptotically safe fundamental theory, probably inequivalent to metric quantum gravity constructed in the same way.
Critical reflections on asymptotically safe gravity
2020
Asymptotic safety is a theoretical proposal for the ultraviolet completion of quantum field theories, in particular for quantum gravity. Significant progress on this program has led to a first characterization of the Reuter fixed point. Further advancement in our understanding of the nature of quantum spacetime requires addressing a number of open questions and challenges. Here, we aim at providing a critical reflection on the state of the art in the asymptotic safety program, specifying and elaborating on open questions of both technical and conceptual nature. We also point out systematic pathways, in various stages of practical implementation, towards answering them. Finally, we also take…