Search results for "Asymptotic Safety"

showing 10 items of 37 documents

Higgs mass predicted from the standard model with asymptotically safe gravity

2016

Tässä Pro Gradu -tutkielmassa tavoitteena on ennustaa Higgsin bosonin massa ottaen lähtökohdaksi hiukkasfysiikan standardimalli, johon on kytketty gravitaatio ns. asymptoottisesti turvallisena teoriana. Ennusteen laskemiseksi selvitetään Higgsin bosonin itseiskytkennän ja neljän muun standardimallin kytkinvakion juokseminen, eli kytkinvakioiden käyttäytyminen energiaskaalan funktiona, johtavassa kertaluvussa MS-skeemassa. Standardimallista saatuihin β-funktioihin lisätään asymptoottisesti turvallisen gravitaation antamat korjaukset suurilla energiaskaaloilla, jonka jälkeen β-funktioiden muodostama differentiaaliyhtälöryhmä ratkaistaan numeerisesti. Standardimallin osittainen äärellinen remo…

Higgs bosonrenormalisationHiggsin bosoniasymptoottihiukkasfysiikan standardimallirunning of couplingasymptotic safety
researchProduct

Entropy Production during Asymptotically Safe Inflation

2011

The Asymptotic Safety scenario predicts that the deep ultraviolet of Quantum Einstein Gravity is governed by a nontrivial renormalization group fixed point. Analyzing its implications for cosmology using renormalization group improved Einstein equations we find that it can give rise to a phase of inflationary expansion in the early Universe. Inflation is a pure quantum effect here and requires no inflaton field. It is driven by the cosmological constant and ends automatically when the renormalization group evolution has reduced the vacuum energy to the level of the matter energy density. The quantum gravity effects also provide a natural mechanism for the generation of entropy. It could eas…

High Energy Physics - TheoryAsymptotic safety in quantum gravityGeneral Physics and AstronomyFOS: Physical scienceslcsh:AstrophysicsCosmological constantAstrophysics::Cosmology and Extragalactic AstrophysicsTheoretical physicsGeneral Relativity and Quantum CosmologyVacuum energylcsh:QB460-466inflationlcsh:ScienceEntropy (arrow of time)PhysicsEntropy productionquantum gravity; Asymptotic Safety; inflationInflatonRenormalization grouplcsh:QC1-999High Energy Physics - Theory (hep-th)quantum gravityAsymptotic SafetyQuantum gravitylcsh:Qlcsh:PhysicsEntropy; Volume 13; Issue 1; Pages: 274-292
researchProduct

The metric on field space, functional renormalization, and metric-torsion quantum gravity

2015

Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein-Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and "tetrad-only" gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an addition…

High Energy Physics - TheoryPhysics010308 nuclear & particles physicsAsymptotic safety in quantum gravityGeneral Physics and AstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Renormalization group01 natural sciencesGeneral Relativity and Quantum CosmologyRenormalizationGeneral Relativity and Quantum CosmologyTorsion tensorHigh Energy Physics - Theory (hep-th)0103 physical sciencesQuantum gravityFunctional renormalization group010306 general physicsQuantumIrreducible componentMathematical physics
researchProduct

Bimetric truncations for quantum Einstein gravity and asymptotic safety

2010

In the average action approach to the quantization of gravity the fundamental requirement of "background independence" is met by actually introducing a background metric but leaving it completely arbitrary. The associated Wilsonian renormalization group defines a coarse graining flow on a theory space of functionals which, besides the dynamical metric, depend explicitly on the background metric. All solutions to the truncated flow equations known to date have a trivial background field dependence only, namely via the classical gauge fixing term. In this paper we analyze a number of conceptual issues related to the bimetric character of the gravitational average action and explore a first no…

High Energy Physics - TheoryPhysicsAsymptotic safety in quantum gravityFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)Cosmological constantGeneral Relativity and Quantum CosmologyRenormalizationGravitationHigh Energy Physics - Theory (hep-th)Quantum gravityBackground independenceCosmological constant problemMathematical physicsGauge fixingAnnals of Physics
researchProduct

Asymptotically safe Lorentzian gravity.

2011

The gravitational asymptotic safety program strives for a consistent and predictive quantum theory of gravity based on a non-trivial ultraviolet fixed point of the renormalization group (RG) flow. We investigate this scenario by employing a novel functional renormalization group equation which takes the causal structure of space-time into account and connects the RG flows for Euclidean and Lorentzian signature by a Wick-rotation. Within the Einstein-Hilbert approximation, the $\beta$-functions of both signatures exhibit ultraviolet fixed points in agreement with asymptotic safety. Surprisingly, the two fixed points have strikingly similar characteristics, suggesting that Euclidean and Loren…

High Energy Physics - TheoryPhysicsAsymptotic safety in quantum gravityFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)Euclidean quantum gravityRenormalization groupGeneral Relativity and Quantum CosmologyRenormalizationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum mechanicsWick rotationQuantum gravityFunctional renormalization groupUltraviolet fixed pointMathematical physicsPhysical review letters
researchProduct

Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation

2008

We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian renormalization group equation. We begin by discussing various cutoff schemes, i.e. ways of implementing the Wilsonian cutoff procedure. We compare the beta functions of the gravitational couplings obtained with different schemes, studying first the contribution of matter fields and then the so-called Einstein-Hilbert truncation, where only the cosmological constant and Newton's constant are retained. In this context we make connection with…

High Energy Physics - TheoryPhysicsAsymptotic safety in quantum gravityGeneral Physics and AstronomyFOS: Physical sciencesCosmological constantGeneral Relativity and Quantum Cosmology (gr-qc)Renormalization groupFixed pointGeneral Relativity and Quantum CosmologyGravitationHigh Energy Physics - Theory (hep-th)Quantum gravityConstant (mathematics)Scalar curvatureMathematical physics
researchProduct

Composite operators in asymptotic safety

2017

We study the role of composite operators in the Asymptotic Safety program for quantum gravity. By including in the effective average action an explicit dependence on new sources we are able to keep track of operators which do not belong to the exact theory space and/or are normally discarded in a truncation. Typical examples are geometric operators such as volumes, lengths, or geodesic distances. We show that this set-up allows to investigate the scaling properties of various interesting operators via a suitable exact renormalization group equation. We test our framework in several settings, including Quantum Einstein Gravity, the conformally reduced Einstein-Hilbert truncation, and two dim…

High Energy Physics - TheoryPhysicsGeodesic010308 nuclear & particles physicsTruncationAsymptotic safety in quantum gravityFOS: Physical sciencesObservableGeneral Relativity and Quantum Cosmology (gr-qc)Operator theoryRenormalization group01 natural sciencesGeneral Relativity and Quantum CosmologyAction (physics)Theoretical physicsHigh Energy Physics - Theory (hep-th)Quantum mechanics0103 physical sciencesQuantum gravity010306 general physicsPhysical Review D
researchProduct

ON QUANTUM GRAVITY, ASYMPTOTIC SAFETY AND PARAMAGNETIC DOMINANCE

2012

We discuss the conceptual ideas underlying the Asymptotic Safety approach to the nonperturbative renormalization of gravity. By now numerous functional renormalization group studies predict the existence of a suitable nontrivial ultraviolet fixed point. We use an analogy to elementary magnetic systems to uncover the physical mechanism behind the emergence of this fixed point. It is seen to result from the dominance of certain paramagnetic-type interactions over diamagnetic ones. Furthermore, the spacetimes of Quantum Einstein Gravity behave like a polarizable medium with a "paramagnetic" response to external perturbations. Similarities with the vacuum state of Yang-Mills theory are pointed …

High Energy Physics - TheoryPhysicsGravity (chemistry)Vacuum stateAsymptotic safety in quantum gravityFOS: Physical sciencesAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Fixed pointRenormalization groupGeneral Relativity and Quantum CosmologyRenormalizationHigh Energy Physics - PhenomenologyGeneral Relativity and Quantum CosmologyTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Space and Planetary ScienceQuantum gravityFunctional renormalization groupQuantumMathematical PhysicsInternational Journal of Modern Physics D
researchProduct

Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism in…

2008

We explore the nonperturbative renormalization group flow of quantum Einstein gravity (QEG) on an infinite dimensional theory space. We consider ``conformally reduced'' gravity where only fluctuations of the conformal factor are quantized and employ the local potential approximation for its effective average action. The requirement of ``background independence'' in quantum gravity entails a partial differential equation governing the scale dependence of the potential for the conformal factor which differs significantly from that of a scalar matter field. In the infinite dimensional space of potential functions we find a Gaussian as well as a non-Gaussian fixed point which provides further e…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsAsymptotic safety in quantum gravityFOS: Physical sciencesGaussian fixed pointGeneral Relativity and Quantum Cosmology (gr-qc)Expectation valueRenormalization groupFixed pointGeneral Relativity and Quantum CosmologyRenormalizationClassical mechanicsHigh Energy Physics - Theory (hep-th)Quantum gravityUltraviolet fixed pointMathematical physicsPhysical Review D
researchProduct

Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation

2002

The exact renormalization group equation for pure quantum gravity is used to derive the non-perturbative $\Fbeta$-functions for the dimensionless Newton constant and cosmological constant on the theory space spanned by the Einstein-Hilbert truncation. The resulting coupled differential equations are evaluated for a sharp cutoff function. The features of these flow equations are compared to those found when using a smooth cutoff. The system of equations with sharp cutoff is then solved numerically, deriving the complete renormalization group flow of the Einstein-Hilbert truncation in $d=4$. The resulting renormalization group trajectories are classified and their physical relevance is discus…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsDensity matrix renormalization groupAsymptotic safety in quantum gravityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Renormalization groupGeneral Relativity and Quantum CosmologyRenormalizationGeneral Relativity and Quantum CosmologyClassical mechanicsHigh Energy Physics - Theory (hep-th)Functional renormalization groupQuantum gravitySemiclassical gravityUltraviolet fixed pointMathematical physicsPhysical Review D
researchProduct